
Understanding Deadlock and Livelock Behaviors
in Hybrid Control Systems

Alessandro Abate1,4, Alessandro D’Innocenzo2,3,
Maria Domenica Di Benedetto3, and Shankar Sastry4

1 Department of Aeronautics and Astronautics,
Stanford University - USA
aabate@stanford.edu

2 Department of Electrical and Systems Engineering,
University of Pennsylvania - USA
adinnoce@seas.upenn.edu

3 Department of Electrical Engineering and Computer Science,
Center of Excellence DEWS, University of L’Aquila - Italy

dibenede@ing.univaq.it
4 Department of Electrical Engineering and Computer Sciences,

University of California, at Berkeley - USA
sastry@eecs.berkeley.edu

Abstract. This paper introduces a formal definition and a categorization of Dead-
lock and Livelock behaviors for a general class of deterministic Hybrid Control
Systems (HCS), thus extending the classical notion known for (uncontrolled) dis-
crete transition systems. This characterization hinges on three important aspects:
(1) the concept of composition (or interconnection) of HCSs; (2) the notion of
control-dependent specification, and that of composition of specifications; (3) the
dynamical structure of a HCS and its related behaviors. The first notion is in-
troduced in a novel manner, by including aspects from the literature of discrete
transition systems, as well as accounting for classical concepts such as that of
feedback interconnection of dynamical systems. The second point allows to for-
mally express general properties that are of interest from a systems and control
theory perspective. The third part discriminates between the different and possi-
bly pathological behaviors that are characteristic to HCSs. After commenting on
the issues of Deadlock and Livelock prevention and verification, the article con-
cludes with two case studies.

Keywords: Hybrid Systems, Control Systems, Systems Composition, Deadlock,
Verification of Specifications.

1 Introduction

The concept of deadlock and its close relative, that of livelock, have been widely investi-

gated in various branches of computer science [22], in particular with regards to discrete

transition systems. Deadlock has often been regarded as a pathology and has been re-

lated to the absence of a particular liveness specification, that of forward progress [2,

Preprint at Journal: Nonlinear Analysis: Hybrid Systems,
Volume 3, Issue 2, May 2009, Pages 150-162

4]. Much interesting work has been done on the verification of the presence of dead-

lock situations in concurrent software modules, or in guaranteeing its absence from the

composition of these modules [6, 29].

Hybrid Systems are rather general mathematical models that connect between dis-

crete, logical, synchronous systems and continuous, real-time, asynchronous ones [26,

27]. In particular, they can model real-time and embedded systems, as well as dis-

tributed, multi-agent and communication systems. They display interleaved and inter-

acting discrete and continuous dynamics. They present behaviors or are endowed with

properties that are “at the limit” between classical discrete transition systems and con-

tinuous dynamical models [27]. Understanding these distinctive behaviors sheds light

on the structure of this general modeling framework, its capabilities, and its limitations.

Motivated by a number of case studies, this work aims at “exporting” the notions

of deadlock and livelock to Hybrid Control Systems (HCS). The definition of these

known concepts within the HCS framework–and in particular to the case of continu-

ous dynamics–appears to be novel. More precisely, the objective is that of introducing

a mathematically rigorous definition of such phenomena and that of providing a clear

characterization of them. The ensuing task of presenting verification procedures aimed

at checking the existence of these phenomena, as well as at drawing sufficient condi-

tions for their absence, is also briefly looked at, and is to be further developed as a

future research direction. Unlike a recent approach in the literature, which introduces

the concept of deadlock according solely to the HS dynamics [14], this work argues

that a formal definition of this notion can be correctly given considering three impor-

tant aspects: that of composition of HCS, which we reformulate inspired by different

approaches in the literature; that of specifications—and their composition—which we

reinterpret from a perspective that is meaningful for control systems; and that of the

dynamics that are characteristic to HCSs and, as such, more complex than those related

to discrete transition systems. According to the proposed procedure, it is then possible

to reinterpret dynamical behaviors that are typical of HCS within this new characteriza-

tion. Attempting a definition of deadlock or livelock based exclusively on a specifica-

tion of “forward progress” (see Section 4) and on the model dynamics (as with simpler

discrete event systems) fails to capture a number of important aspects: the presence of

controls in the hybrid model, the subtleties of its continuous dynamical behaviors, the

issue of composition between systems. We stress that, as expected, the introduced con-

2

cepts nicely tailor back to corresponding ones in the literature of, respectively, discrete

and continuous systems.

The presentation of the material matches the three important aspects discussed

above, and the article is thus structured as follows. Section 2 formally introduces the

concept of HCS with its semantics, and discusses structural properties of the model.

The definition in particular deals with the presence of a control in the model. Section 3

defines the composition between HCSs. Section 4 introduces the notion of specification,

and discusses a few possible forms that are of relevance for control systems. Unlike the

classical notion of specification dealt with in the literature on automatic verification,

where we are interested in an operative notion to be used with model checking proce-

dures, in this work we highlight the presence of a control action and set up the concept

of specification with the objective of defining the concepts under study in the article.

Furthermore, the composition of specifications is illustrated and discussed. Given this

setup, by looking at the set of possible dynamical behaviors associated to HCSs—and

to their composition—Section 5 defines the notions of deadlock and livelock. Section

6 succinctly establishes a framework for the study of the issues of deadlock prevention

and verification. Finally, Section 7 develops two case studies to describe how to apply

and understand the notions of deadlock and livelock within the developed theoretical

framework.

2 Deterministic Hybrid Control Systems: the Model

Let us start by introducing the concept of HCS. This definition is rather detailed, in

order to formally pin down concepts that will be further developed in the definition of

hybrid systems composition.

Definition 1 (Deterministic Hybrid Control System). A Deterministic Hybrid Con-

trol System is a tupleH = (X,U,Y, F,T), where:

– X is the hybrid state space, composed of

• Q ⊆ N, a finite set of discrete states, or modes

• D = {Di}i∈Q, the set of domains associated with each mode. Di is a subset of

Rni , where ni < ∞ may vary for different domains

• Init ⊆ D is the set of initial conditions

The space is specified as the disjoint union of the domains, i.e. X = ∪i∈Q{qi} × Di

3

– U is the control space, U ⊆ RnU and bounded. The control is a function defined on

the set of nonnegative reals and with values in U, u : R+0 → U, whereR+0 = R
+∪{0}.

We assume it is cadlag, i.e. piecewise-continuous from the right and with left limit,

lying in RnU

– Y is the observation space, Y ⊆ RnY . The outputs will be determined by a static

“observation” function h : X → Y

– F = { fi}i∈Q : D×U → D is the set of vector fields. Each fi is assumed to be contin-

uous w.r.t. time and Lipschitz continuous with respect to the dependent variables.

The vector field fi characterizes the ODE ẋ = fi(x, u),1 where u(t) ∈ U, for any

t ∈ R+0 and with an initial condition x0 ∈ Di

– T is the set of transition relations, composed of

• E ⊆ Q × Q, a set of edges. Each edge e ∈ E is an ordered pair of modes, the

first component of which is the source and is denoted by s(e), while the second

is the target and denoted by t(e)

• G = {Ge}e∈E, a set of guards, where Ge : U → 2Ds(e) . The guards are defined

over the domains. We assume that ∀e′, e′′ ∈ E, e′ � e′′, s(e′) = s(e′′),∀u ∈
U,Ge′ (u)∩Ge′′ (u) = ∅, i.e. the guards do not intersect in a domain. The guards

are considered to be “forcing” the jumps, as will be stressed in the definition

of execution

• R = {Re}e∈E, a set of reset functions, where ∀e ∈ E,Re : Ds(e) → Dt(e)

Remark 1 (Determinism of the Model). The assumptions of Lipschitz continuity for the

vector fields,2 of non-intersection between guards, on their “forcing” feature, and on the

structure of the reset functions, are sufficient for ensuring the determinism of the model

for all initial conditions in Init, both in the continuous dynamics and in the discrete

jumps. We allowed for resets onto a guard set, which translates into admitting multiple

discrete state transitions in zero-time. This does not prevent determinism, as it is also

stressed in [27].
�

Remark 2 (Non-blocking Conditions). For i ∈ Q, let Gi(u) =
⋃

e:s(e)=i
Ge(u), and define

∂Di = cl(Di)\int(Di), where cl(Di) is the closure of Di, while int(Di) is the interior of
1 For the sake of precision, we remark that the state and the input are different signals; one is

defined over the hybrid time set (see Definition 2), the second over the real time, which is a
subset of the first. This can be extended to time-dependent vector fields.

2 In particular, we stress this assumption with regards to the control input, which in general
is allowed to be Lebesgue measurable [31], and in particular piecewise-continuous as in the
present case.

4

Di. If the following holds:

(∀i ∈ Q,∀u ∈ U), ∂Di ∩ Di ⊆ Gi(u) ∧ ∂Di\Di ⊆ cl(Gi(u)), (1)

then no trajectory ever exits from a domain without hitting a guard (recall that the guards

are understood to be forcing the jump). The condition then states that the boundary has

to belong to the guard set, if it is part of the domain, or to the closure of the guard set.

The condition can be weakened, as long as we impose that the guard set is by definition

a subset of the domain. Notice that the resets are always acting within a domain.
�

Notice in passing that we have introduced a dependence of the guards on the continuous

control, but the resets are left uncontrolled—the extension is possible and left to the

interested reader.

To define the notion of execution associated to H , we first introduce the following

notion [26]:

Definition 2 (Hybrid Time Set). A hybrid time set τ = {Ik}k≥0 is a finite or infinite

sequence of intervals Ik = [tk, t′k] ⊆ R+0 such that

1. Ik is closed if τ is infinite. Ik might be right-open if it is the last interval of a finite

sequence τ

2. tk ≤ t′k for k > 0 and t′k−1 = tk for k > 1

The length (t′k − tk) of every interval Ik denotes the dwelling time of the hybrid flow

within a discrete location, while the extrema tk, t′k specify the switching instants. Let

us stress that the above set is ordered, hence it makes sense to use notations such as

tk ≤ t′k. A hybrid trajectory, or hybrid flow, is a pair (x, τ), where the first component is

a function x = (q, v) : τ → X, that describes the evolution of the continuous part v and

the discrete part q, which is defined on a hybrid time set τ and take values on X. Finally,

a hybrid execution is a pair (x, τ) which can be algorithmically generated as follows:

Algorithm 1 (Hybrid Execution):

1. Pick (q(t0), v(t0)) ∈ Init, set k = 0, τ = ∅

2. Evolve the continuous trajectory v(t) according to the vector field, which depends

on the exogenous control u|[tk ,t) and with initial condition v(tk) until a guard is hit:

namely until time t′k ∈ [tk,∞) such that v(t′k) ∈ Ge

(
lim
t→t′−k

u(t)
)
, where s(e) = q(tk)

3. If t′k = ∞, add Ik = [tk,∞) to τ and exit the algorithm

5

4. Else add Ik = [tk, t′k] to τ. Define q(tk+1) = t(e) and v(tk+1) = Re(v(t′k)). Increment k

and go to line 2

Remark 3. In what follows, we will call event a discrete state transition. Notice that

events are only due to the intersection of an execution with a spatial guard. For the sake

of generality (and in order to further tailor the model into that of discrete transition

systems), in Definition 1 we have assumed a dependency of the guard on the control

signal. The control is a piecewise right-continuous function: in order to rule out prob-

lems related to its discontinuity points, we have introduced in the semantical definition

of an event a dependence on the limit from the left. This assumption will play a role in

ruling out “cycling conditions” on the composition of two HCSs (see Remark 6).
�

Within the set of hybrid executions, we shall also focus on the following subset:

Definition 3 (Zeno Executions). Zeno executions are hybrid trajectories which are

characterized by an infinite number of jumps in a finite amount of elapsed time. The

hybrid time set of a Zeno trajectory has infinite cardinality and satisfies the following

property:
∞∑

k=0

(t′k − tk) < ∞

Zeno can be of two kinds [8]: chattering and genuine. The first case happens when

∃k∗ : ∀k ≥ k∗, tk = t′k = tk∗ . The second happens if ∀k ≥ 0,∃k∗ ≥ k : (t′k∗ − tk∗) > 0.

The output of the hybrid system is, for each execution, a function from the hybrid

time set to the output space. Since our purpose is to set up a notion of input-output

interconnection, in the spirit of [28, 29], we suppose that the interconnected output of

a HCS is a physical signal expressed by a function of the real time, rather than of the

hybrid time basis. This allows to give a notion of interconnection that is asynchronous

and disregards the dynamics at the level of the internal states of the HCS. Recall that

a hybrid time set is defined as τ = {Ik}k≥0, with Ik = [tk, t′k] ⊂ R+0 , t′k ≥ tk,∀k ≥ 0. We

introduce the following:

Definition 4 (Interconnectable Outputs). Given a HCS and any output execution y(t),

t ∈ τ, the interconnectable output associated with y(t) is a signal ỹ(t), t ∈ R+0 , which

is a function of the real time basis defined by a projection of y on R+0 , such that ỹ(t) is

cadlag.

6

Considered in its generality, the model in Definition 1 is a melange between the

classic hybrid automaton [26] and the Lipschitz HIOA in [28, 29]. In particular, we re-

mark that the state space is intended to be an internal state, while the output and the

control ones are intended to be interface/external states. The model is similar in struc-

ture to the hybrid automaton at an internal level, while it relates to the HIOA at a higher,

external level. In comparison to the HIOA model, we highlight here the presence of spa-

tial guards, reset maps, as well as the influence of the control structure at the internal

level. Motivated by a control perspective on the model, we avoid to introduce the no-

tion of action (either internal, or external) as in [28, 29]. Here an action is simply the

dynamic outcome of a state jump, and is possibly influenced by the exogenous control.

We also do not distinguish a-priori between internal and external signals (which, in the

HIOA setup, are thought to be “variables”). We have implicitly assumed that there is

a relationship between the state and the output spaces by the introduction of the ob-

servation function h—being this a function, determinism is retained. If the system is

fully-observable, we take the continuous output space Y to coincide with the largest

of the domains Di, once we have embedded all of them in Rmaxi{ni}—h performs this

embedding.

3 Composition of Hybrid Control Systems

The concept of systems composition may be introduced in a number of ways, depend-

ing on the characteristics and properties of the systems (discrete or continuous, causal

or non-causal, to name a few), the structure of the operation (in parallel [11] or as a

product [32], for instance), and the particular properties that we may want to check for

(preservation of synchronicity or sequentiality, for example). In this work we consider

a composition operation that can be interpreted as a form of parallel composition. A

similar concept has been introduced, among the many places, in [6, 7, 11, 30]. Notice

that the introduction of a model structure with different “layers,” similar to that in [28,

29], allows to conceive the system at the level of its hidden/internal signals (the hybrid

state space with its vector fields and transition relations, as in Section 2) as a black box

and to simply focus on the external components (the interface components in Section 2)

when performing the interconnection. This is the advantage of the interpretation as an

input/output system. Unlike previous work, which simply performed parallel composi-

tions or crude variable “sharing,” inspired here by a more control-theoretical perspective

we allow the connections between inputs and outputs of the systems to depend on gen-

7

eral functions endowed with some properties—in other words, we naturally introduce

an output feedback framework. We are in particular interested in a definition which may

further tailor into known operations in the purely discrete case (transition systems) or

dynamical instance (feedback interconnection). We suppose that:

Assumption 1. The input spaces Ui, i = 1, 2 are rectangular sets, i.e. Ui = [u1, ū1] ×
[u2, ū2] × ... × [um, ūm], where m = dim(span(Ui)), u j, ū j ∈ R and u j ≤ ū j.

The necessity to avoid mutual dependence between input components comes from the

need to perform projections on their spaces, as it will become shortly clear. Before

introducing the notion of composition of two hybrid systems we raise the following

assumption:

Assumption 2 (Compatibility Conditions).When two HCSH1 andH2 are to be com-

posed, we assume that the two systems, considered in separation, have no shared inputs,

nor shared output signals (in other words, input signals do not “split” and outputs do

not “merge”). If this happens, we say thatH1 andH2 are compatible.

The first assumption is raised for consistency with the definition below. The second

assumption avoids imposing conditions on the dynamics of the two systems once they

get interconnected. In the literature this structural requirement is a subset of the known

compatibility conditions, [7, 28]. We nevertheless recall that, as discussed at the end

of Section 2, in general we allow for the (partial) coincidence of internal and external

components of two systems, unlike [28, 29].

Given a set W, subset of a subspaceW ⊆ Rn with dim(W) = m ≤ n, let MW be an

invertible matrix such that for any w ∈ W, MWw = [wT , 0T]T . Such a matrix always

exists. Assume that W andW are rectangular (see Assumption 1), that is of the form

W = a1span{w1} × a2span{w2} × ... × anspan{wn}, where ai ∈ {0, 1} and wi are the

canonical base vectors of Rn. Introduce the operator π|A(B), which yields the projection

of the set B over the space A. A (parallel) composition procedure between two systems

is introduced as follows:

Definition 5 (HCS Composition). Given two compatible HCSH1 = (X1,U1,Y1, F1,T1)

and H2 = (X2,U2,Y2, F2,T2), a composition procedure ||Σ is specified by Σ = {W1 ×
W2, g1 × g2}, i.e. a set of rectangular subspacesWi ⊆ span(Ui), i = 1, 2, and the maps

g1 : Y2 → π|W1 (U1), g2 : Y1 → π|W2 (U2). The operation ||Σ yields HΣ = H1||ΣH2 =

(XΣ,UΣ,YΣ, FΣ,TΣ), which is a new HCS made up of the following:

8

– XΣ = X1 × X2, InitΣ = Init1 × Init2 are the hybrid state space and initial conditions

– UΣ = π|(W⊥
1 ×W⊥

2)(U1 × U2) is the input space (hereW⊥· is the orthogonal ofW·)
– YΣ = Y1 × Y2 is the output space

– FΣ = { f Σ(q1,q2)}(q1,q2)∈Q1×Q2 is the vector field. For any (x1, x2) ∈ XΣ and (u1, u2) ∈ UΣ,

f Σ(q1,q2)((x1, x2), (u1, u2)) = fq1 (x1,M−1
W1

[uT
1 , g1(h2(x2))T]T)× fq2 (x2,M−1

W2
[uT

2 , g2(h1(x1))T]T)

– TΣ is the set of transition relations, composed of

• EΣ = E1 × E2, is the set of edges

• GΣ = {GΣe }e∈EΣ , is the set of guards, where for any (u1, u2) ∈ UΣ and any

(e1, e2) ∈ EΣ the guard set GΣ(e1,e2) is implicitly defined by (x1, x2) ∈ GΣ(e1,e2),

where (x1, x2) ∈ (G1)e1 (M−1
W1

[uT
1 , g1(h1(x2))T]T)×(G2)e2 (M−1

W2
[uT

2 , g2(h2(x1))T]T)

• RΣ = {Re}e∈E, is the reset function, where ∀e = (e1, e2) ∈ EΣ,RΣe = (R1)e1 ×
(R2)e2

Proposition 1 (Closure). Given a pair of compatible HCSH1 andH2 and a composi-

tion Σ = {W1 ×W2, g1 × g2}, the systemHΣ = H1||ΣH2 is an HCS.

Proof. It follows by construction. The conditions raised on the structure of the HS H1

andH2, as well as on Σ, do not require additional assumptions to derive the conclusion

onHΣ .
�

The following remarks contain a number of specific comments on the introduced notion.

Remark 4 (Input-Output Signals Interconnection). The interconnecting functions g1, g2

that in part characterize the composition Σ turn a transformation of part of the original

output spaces into part of the original input spaces. Notice that we have not assumed

that the input and output spaces have the same dimension: the dimensionality is handled

directly by the interconnecting functions g1, g2. In particular, such interconnections map

the output signal to a subset of the input space. More precisely, the functions g1, g2

are defined on a subset of the output spaces, i.e. dom(g1) ⊆ Y2 and dom(g2) ⊆ Y1:

their dimensions indicate the number of signals employed in the interconnection. The

dimension of the codomain dim(Wi) defines the number of signals actually connected.

The way they get connected to the input signals is further specified by the subspaces

Wi in an intuitive way. More general compositions, that allow the output signals to

be “shuffled” (rather than just sequentially clustered), can be obtained by appropriately

redefining the matrices MWi . The new input set for the composition is the projection

of the cartesian product of the two original input sets onto the space of the “unused

signals,” i.e. of those inputs that have accepted no feedback. Clearly, in the full-feedback

9

case, the codomains of the gi shall be the whole input spaces Ui, thus providing a fully

dynamic (and, thus, uncontrolled) composition. Finally, let us stress that it is possible

to write g = g1 × g2 as a cartesian product between functions.
�

Remark 5 (Events on the composed system). The events of the composed system are

specified “asynchronously.” In other words, while the dynamics of the two models mu-

tually affect each other, the events happen within each single system, possibly at the

same time, with no need to be reciprocally synchronized.
�

Remark 6 (Asynchronicity, Absence of Cyclic Constraints). Both H1 and H2 are asyn-

chronous by definition and their compositionHΣ is asynchronous as well. The compo-

sition can indeed be viewed from the outside as an interconnection of two dynamical

systems. This does not exclude the presence of pathological behaviors (Zeno or block-

ing, for instance), which arises at an internal level. For now, we do not impose any

a-priori condition to exclude this, unlike previous literature, where the focus was on

ensuring infinite forward time progress under systems composition [6, 7, 28, 29]. As

discussed, the discrete events affecting the signals of each system are allowed to hap-

pen without any imposed synchronization, even if we have allowed the internal (state)

and external (outputs) signals to possibly partially overlap. This is due to the semantics

of the events, which depend on the value of the control at the limit (see Algorithm 1).

In the literature [28, 29], this “cyclic constraints” have been artificially avoided by split-

ting up internal and external variables. Another method to prevent these conditions has

been that of imposing some ordering, or sequentiality, between the signals in the loop.

However, this would prevent the introduction in generality of the concept of dynamic

feedback.
�

Remark 7 (Commutativity and Associativity of the Composition). The composition is

trivially commutative by the way it is defined. The associative property is verified in the

following sense: given three HCS H1, H2, H3, if it is legitimate to compose them as

(H1||Σ1H2)||Σ2H3, then it is also possible to perform the composition H1||Σ1 (H2||Σ2H3)

and it holds true that (H1||Σ1H2)||Σ2H3 = H1||Σ1 (H2||Σ2H3). Notice that we have not

specified the details of the above composition procedures, but just assumed that there

exist interconnecting maps that respect the domain dimensionality, as well as bounds

ensuring that the composition of the three systems can be performed in a unique way.

Showing that it is possible, and indeed equivalent, to perform the composition in the

other order is only a matter of calculations. We remark that this property ensures the

10

generality of Definition 5 in that it can be repeated more than once without worrying

about the order. This will also be exploited in the ensuing sections when reasoning about

composing specifications. Another issue that precedes the above property is the seek of

conditions that ensure that the composition between a number of HCS is structurally al-

lowed. An intuitive necessary condition for this fact to hold for a composition between

a set Hi, i ∈ I through Σ = {Σ j,k, j, k ∈ I}, is that the codomains of all the intercon-

necting maps to any particular input space do not intersect : ∀i ∈ I,∀ j, k : {Σ j,i, Σk,i} ∈
Σ,W j ∩Wk = ∅.
�

The following can be derived from Remark 1 and the way the composition in Definition

5 is performed.

Proposition 2 (Determinism of the Composition). Given a pair of deterministic HCS

H1 and H2 and a composition Σ = {W1 × W2, g1 × g2}, if the maps gi are almost-

everywhere continuous, then the hybrid systemHΣ = H1||ΣH2 is also deterministic.

Proof. The continuity hypotheses imply that the piecewise-continuous inputs will prop-

erly affect the other vector fields—this, coupled with the boundedness of the input sig-

nals, ensures that the solutions of the vector fields will again exist and be unique [31].

The absence of cyclic constraints also prevents non-deterministic trajectories from ex-

isting. The conclusion follows from the comments in Remark 1.
�

More general compositions can be described with small changes to the setup given

in this section. For instance, it is possible to define feedbacks endowed with “self-

loops” within a single HCS. Futhermore, it is also interesting to look at time-varying

interconnections, which may introduce a “switching” composition. This may introduce

interesting, but possibly pathologic phenomena, such as Zeno [18].

4 Specifications and their Composition

In this section we consider the notion of “specification,” which is defined for trajecto-

ries on the observation space. In general, specifications may be defined via temporal

logic formulae for real-time systems. We are not considering general classes of tem-

poral logic formulae such as those defined in Computation Tree Logic (CTL) [13] and

Timed CTL [5]. In this work, we are not interested in the problem of automatic veri-

fication of these specifications by model checking algorithms: rather than focusing on

an operative/logical definition, we introduce the notion with the goal of defining the

11

concepts of deadlock and livelock or HCS, which requires the investigation of the prob-

lem of composition of specifications. We will focus on four simple temporal properties

of interest and, due to the dependence of the models on a control, we will introduce

existential or universal quantifiers on the control signals. This choice allows to express

specifications that are general enough to cover a range of important problems in control

theory. LetM ⊆ Y and recall that U is the set of control inputs for a HCSH . We further

denoteU as the set of cadlag functions u : R+0 → U, defined on the non-negative reals

and with values in U. We set up the following four specifications as template problems

for our study:

1. reachability: ϕR(U,M) � ∃u∗ ∈ U,∃t∗ < ∞ : y(t∗) ∈ M
2. attractivity: ϕA(U,M) � ∀u ∈ U,∃t∗ < ∞ : y(t∗) ∈ M
3. invariance: ϕI(U,M) � ∀u ∈ U,∀t ≥ 0 : y(t) ∈ M
4. viability: ϕV (U,M) � ∃u∗ ∈ U,∀t ≥ 0 : y(t) ∈ M

The known liveness property, which is the object of much investigation in the literature

on transition systems, can be reinterpreted within the first two of the above properties.

In particular, the requirement of forward progress has been studied [6, 7, 22, 2] for its

practical implications and connections with phenomena such as Zeno or blocking be-

havior. The last two of the above four properties instead can be thought of as safety

specifications. With regards to the quantification on the control, the first and fourth in-

stances can be intended as control synthesis problems (i.e., we search for a “witness”

related to a particular specification), while the second and third as verification prob-

lems. If the system is purely dynamic, then the quantification over the controls is to be

disregarded. In this case as expected 1=2 and 3=4, and we are exclusively interested in

the validity of the proposition.

Notice that the above definitions have been given in generality with respect to the

signal y(t) ∈ Y , which is the output of the control-dependent dynamics ofH , and which

is defined on the hybrid time set τ, according to Definition 2. Because of the hypothesis

on the determinism of the model (see Remark 1), given an initial condition and a time-

dependent control, the generated hybrid trajectory is unique.

We write x0 |=H ϕ(U,M) (and say that x0 satisfies ϕ(U,M) forH) if the specification

under study (which again depends on the sets U and M) is satisfied by executions

with initial condition x0 ∈ X. We are then interested in the set of initial conditions that

satisfy a given specification: more formally, we introduce the following subset of the

12

set of initial conditions:

XH = {x0 ∈ Init : x0 |=H ϕ(U,M)}.

We writeH |= ϕ(U,M) (and say that the systemH satisfies ϕ(U,M)) ifXH = Init.

Let us now consider two hybrid systems H1 and H2, two corresponding specifications

ϕ1(U1,M1), ϕ2(U2,M2) and a composition procedure Σ. We are interested in compos-

ing the two specifications ϕ1, ϕ2.3 Similar to [1], we define:

Definition 6 (Composition of Specifications). Given two compatible HCSH1,H2 with

specifications ϕ1(U1,M1), ϕ2(U2,M2) and a composition procedure Σ, the composed

specification ϕΣ(UΣ,M1 ×M2) = ϕ1(U1,M1) ||Σ ϕ2(U2,M2) for the HCS HΣ is the

conjunction ϕ1(U1,M1) ∧ ϕ2(U2,M2), modulo proper substitutions of its entities ac-

cording to the composition maps g1, g2 that characterize Σ.4

4.1 Preservation of Specifications under Composition of HCSs

The composed system HΣ = H1||ΣH2 can be investigated from the perspective of the

preservation of specifications defined on the original systems H1,H2. Let us start by

looking at the existence of initial conditions for the composed system HΣ that are as-

sociated to trajectories that verify the composed specification ϕΣ :

XHΣ = {(x0
1, x

0
2) ∈ InitΣ = Init1 × Init2 : (x0

1, x
0
2) |=HΣ ϕΣ}. (2)

Furthermore, rather than verifying the specification ϕΣ directly on the composed HCS

HΣ , as in equation (2), we may be interested in checking whether some verified prop-

erties on the original systems (say ϕ1 and ϕ2 on H1 and H2) are retained through a

certain composition procedure (say Σ). This approach is motivated by the definition of

the concepts of deadlock and livelock, to be introduced shortly, which is associated with

pathological behaviors at the level of the composition. More precisely, let us introduce

the following set:

X̄HΣ := {(x0
1, x

0
2) ∈ XH1 × XH2 : (x0

1, x
0
2) |=HΣ ϕΣ}.

3 In the following, we may omit the specification of the spacesU,M for a specification ϕ when
redundant.

4 In other words, it may be necessary to substitute some control variables appearing in the for-
mulas for ϕ1(U1,M1), ϕ2(U2,M2) according to the composition functions g1, g2. Notice that
in [1], a space embedding is also necessary in the case of composition of specifications defined
on heterogeneous spaces. Definitions 1 and 5 render this unnecessary.

13

The following containment relationships hold valid: X̄HΣ ⊆ XHΣ ⊆ Init1 × Init2. Let

us remark that XHΣ is the subset of initial conditions of HΣ that satisfy the composed

specification ϕΣ . X̄HΣ , instead, is the subset of the sets of initial conditions XH1 × XH2

which, taken separately, satisfy the single specifications ϕ1, ϕ2 for H1,H2, and which

also satisfy the composed specification ϕΣ forHΣ . We are finally able to define the set:

X̃HΣ := (XH1 × XH2)\X̄HΣ . (3)

This is the set of initial conditions which, taken separately (i.e. within each of the orig-

inal systems), would satisfy the corresponding properties for that single system, but

which (considered on the composed system) do not satisfy the composed specification

ϕΣ for HΣ . Notice that, if the specifications ϕ1, ϕ2 are expressed with the universal

quantifier over the control functions (that is, they are of the form ∀ui ∈ Ui, i = 1, 2),

then X̄HΣ = XH1 × XH2 , and thus X̃HΣ = ∅. This happens because the interconnection

simply restricts the set of available input signals for the composed system. Thus, if a

universal property holds for any of the control input signals, it also holds for a subset

of them. This suggests to restrict the attention in the following to the case where either

ϕ1 or ϕ2 handle the controls ui with an existential quantifier (i.e. ∃ui ∈ Ui, i = 1, 2). In

other words, as anticipated earlier in this Section, we shall focus on control synthesis

problems, rather than on verification problems (which are usually tackled with model

checking procedures). In the next Section, we claim that the elements of X̃HΣ are initial

states of HΣ that are associated with “pathological” behaviors, when looked at from

the perspective of the verification of the composed specification ϕΣ , resulting from the

interconnection Σ.

It is then within the set X̃HΣ that we will be looking for deadlock and livelock exe-

cutions. The actual definition of these executions will hinge on the dynamical properties

of the generated executions, as described in the next Section 5.

5 Formal Definition of Deadlock and Livelock for HCS

Let us start by introducing the following known invariance concept, tailored to the HCS

case:

Definition 7 (Hybrid Invariant Set). Consider a HCS H . Select a particular control

over time. A hybrid set I ⊆ X is defined to be invariant if the following holds for

the hybrid trajectory (x, τ), solution of H and originating from the chosen control: if

∃ t∗ ∈ τ : x(t∗) ∈ I, then x(t) ∈ I,∀t ≥ t∗.

14

From a dynamical standpoint, the concepts of deadlock, or livelock, are intuitively re-

lated to the idea of a trajectory being “constrained” or “stalled” in a region of the state

space. This bounding condition is then further described with regards to the presence or

absence of continuing motion within the region. We then distinguish the pathological

trajectories associated with X̃HΣ as follows:

Definition 8 (Deadlock and Livelock for HCS). Consider a HCS HΣ = H1||ΣH2,

and the associated set X̃HΣ as in (3). The items in X̃HΣ can be categorized into the

following, possibly overlapping sets:

X̃HΣ = X̃d
HΣ ∪ X̃l

HΣ ∪ X̃e
HΣ . (4)

More precisely, they belong to either of the following:

– X̃d
HΣ ∪ X̃l

HΣ = {x ∈ X̃HΣ : x(0) = x,∃ I ⊂ XΣ, t∗ ≥ 0 : x(t∗) ∈ I}, the set of initial

conditions associated with trajectories that enter an invariant set I
– X̃e

HΣ = X̃HΣ\(X̃d
HΣ ∪ X̃l

HΣ), the complement of the above set in X̃HΣ , the set of

initial conditions that correspond to trajectories that do not encounter an invariant

set in XΣ

The above two-point categorization is exhaustive over the set of executions. Further-

more, the first set X̃d
HΣ ∪ X̃l

HΣ is precisely composed of:

– X̃d
HΣ = {x ∈ X̃HΣ : x(0) = x,∃ I ⊂ XΣ,∃ t∗ ≥ 0 : x(t∗) ∈ I ∧ ∀t ≥ t∗, {x(t) =

x(t∗)} ∨ {x(t) is undefined}}, the set of initial conditions associated with deadlock

executions: these are defined by absence of motion in finite time (“stalling” situa-

tion)

– X̃l
HΣ = {x ∈ X̃HΣ : x(0) = x,∃ I ⊂ XΣ, t∗1 ≥ 0 : ∀t ≥ t∗1, x(t) ∈ I,�t∗2 ≥ 0 :

∀t ≥ t∗2, ẋ(t) = 0}, the set of initial conditions associated with a livelock situation:

these are characterized by endless motion, either in their continuous or discrete

component.

The above three sets are non overlapping if the composition is fully dynamic, namely

if UΣ = ∅. Notice that in the definition of X̃d
HΣ the set I could simply coincide with

the point x(t∗), while for the livelock case this set has to be non-trivial. The definition

above hinges on a purely dynamical level. This represents the last point, after that of

composition and that of specification, which is regarded in this work as a necessary

point to introduce the notions of deadlock and livelock in the framework of HCS.

15

Let us now study how known types of dynamics in a HCS are categorized within

the above definition (this list does not claim to cover all the set of possible hybrid

trajectories):

– Deadlock Situations:

• blocking conditions: states for which no “next” state is defined.

• stable equilibria in finite time: equilibria in the continuous dynamics that are

reached by a reset operation

• chattering Zeno: the discrete component infinitely jumps instantaneously be-

tween different domains, while the continuous component remains unchanged

(Definition 3)

• genuine Zeno: the hybrid trajectory performs an infinite number of transitions

in a finite amount of time, with non-trivial continuous motion (Definition 3)

– Livelock Situations:

• stable equilibria in infinite time: equilibria for the continuous dynamics

• limit cycles, both in the continuous and the discrete dynamics

It is easy to add to the above that the set X̃e
HΣ is associated with diverging trajecto-

ries: such trajectories are characterized by finite or infinite escape time, either in the

continuous, or in the discrete component.

Remark 8 (On Zeno Phenomena). Zeno behaviors are peculiar phenomena that occur

to trajectories in HCS models and which truly highlight their structural characteristics.

Even in the case of the proposed characterization, it is interesting to stress that their

characterization is “in between” that of deadlock and livelock. They are in fact similar

to a blocking condition, in that they are not defined for all the (hybrid) time set, while

adhering to the second group as they are endowed with an “infinite motion”. We cate-

gorized them within the deadlock situations because of the practical outcome involving

their presence, that of “stalling” a program that simulates them.
�

6 Perspectives on Prevention and Verification of Deadlock and
Livelock

The next step after the characterization of the notions of deadlock and livelock for HCS

is that of deriving conditions on the original systems (both considered in separation)

and on the composition operator, which can enforce the absence of deadlock/livelock

behaviors on the composition, possibly without actually computing it (we shall talk

16

about prevention). Furthermore, it is also key to be able to check for the presence of

these behaviors directly on the composition (verification problem).

In this section, we start to explore the prevention and verification problems, and we

suggest that it is possible to relate them to problems already studied in the literature.

In order to prevent deadlock in a composition of two systems, we need to restrict

the set of executions of the original HCSs. More precisely, it is sufficient to exclude

specific dynamic behaviors related to deadlock situations: blocking, finite time stability,

and Zeno.

For instance, when investigating the prevention of blocking executions in a com-

position, it can be shown that it is sufficient to raise non-blocking conditions on the

original systems (as stated in Remark 2, equation (1)). Similarly, we can investigate

conditions to prevent finite-time stable trajectories that may be related to deadlock be-

haviors in the composition. Such conditions will involve the interplay between guard

sets, reset maps, and equilibrium points. Furthermore, we can investigate conditions to

prevent Zeno behaviors in the composition. A number of approaches have appeared in

the literature [28, 29], in part inspired by older work [6, 7], which entail the presence

of exclusively non-blocking and non-Zeno executions for the HCS. These results hinge

on the knowledge that the two original systems are Zeno-free. Necessary conditions for

their existence have been discussed in the literature [20, 34, 19].

It is straightforward to speculate that the issue of verification of deadlock behaviors

on a HCS is at best computationally hard, if not undecidable. In this paper, we limit

the study to hinting at the main computational issues and we relate them to the adja-

cent literature. According to Definition 8, a verification procedure ought to focus on

the presence of non-trivial invariant regions on the composed HCS, and check if such

regions belong to the set of executions of the system.

In general, finding invariant sets is a computationally heavy task [10], let alone in the

hybrid case [3]. The reason for this can be traced back to the variety of possible dynam-

ical behaviors, especially switching ones. Procedurally, we can either resort to the back-

propagation of equilibria or ω−limit sets, or to the forward-propagation of sets from ini-

tial conditions. The literature on computational approaches to reach set computation for

HSCs is quite rich [12, 9, 24, 25, 33, 16, 17, 21]. This intensive research has given birth

to several verification tools for reachability analysis on hybrid systems, such as d/dt,

MATISSE, CheckMate, the Ellipsoidal Toolbox, and many others. For a more exhaustive

review, the reader is directed to http://wiki.grasp.upenn.edu/∼graspdoc/wiki/hst/

17

7 Case Studies

Deadlock Example: Three cars crossing an intersection

Consider the interconnection of three hybrid models Hi, i ∈ {1, 2, 3}, each of which

describes the dynamics of a car moving along a road. The road has a stop sign. The

model describes the dynamics associated with the position of the car, and is hence one

dimensional. The stop sign is assumed to be positioned at the origin of the axis. The ith

car is controlled through its velocity—the control action depends on four qualitatively

different states in the spatial domain. In the first (before and away from the intersection),

the vehicle speeds toward the intersection, until it reaches the second region, where

it decelerates until hitting the intersection. There (third region), it may move on and

accelerates until getting out of a buffer zone, where (fourth region) the control steers the

car away from the intersection. The HCS of each car is described byH = (X,U,Y, F,T).

X is composed of the discrete state space Q = {1, 2, 3, 4} and the collection of domains

D = {D1,D2,D3,D4} where D1 = (−∞,−c], D2 = [−c, 0], D3 = [0, d] and D4 =

[d,+∞), with the positive constants c, d. U = [0,N],N < ∞, is the control space, and

Y = R is the observation space. We suppose that the output coincides with the state, i.e.

we are in the case of full observability. F = { f1, f2, f3, f4}, where, considering a “small”

constant δ > 0,

f1(x, u) = u + δ, f2(x, u) = −u
c

(x − δ), f3(x, u) =
u
d

(x + δ), f4(x, u) = u + δ.

T is the set of transition relations, composed of E = {e1, e2, e3} with e1 = (1, 2), e2 =

(2, 3) and e3 = (3, 4). G = {Ge}e∈E is the set of guards, where for any u ∈ U, Ge1 (u) =

{−c}, Ge2 (u) = {0} and Ge3 (u) = {d}. R = {Re}e∈E , where Re(x) = x, ∀e ∈ E.

We assume that the hybrid model of each car coincides with the HCS H , i.e.

Hi = (Xi,Ui,Yi, Fi,Ti) = H , i = 1, 2, 3. The initial condition xo
i ∈ Initi = (D1)i.

The control signals are cadlag functions. Notice that the structure of the vector fields

with their simple dependence on the control signals, as well as the identity of the reset

maps, defines the state trajectory, and hence the output, on the real time. It is hence not

necessary to introduce the maps l, which turn output signals to interconnectable ones.

We specify for each system a reachability property, which denotes the possibility

for the car to reach a certain point “way ahead of the stop sign”:

ϕR(Ui,K) := ∃u∗i : [0,∞)→ Ui,∃ 0 ≤ t∗ < ∞ : xi(t∗) = K > d.

18

As above we have denoted withUi the set of control functions in Ui. It should be clear

that considering all the three systems, singularly taken, for each initial condition there

exists a control (discrete and continuous) such that the system satisfies the reachability

specification. More precisely,

∀ui(t) ∈ (0,N], t ≥ 0,∀xo
i ∈ Initi, xo

i |=Hi ϕR, henceHi |= ϕR.

We can then conclude that XHi = Initi. Notice that the left closure of the sets Ui make

a different “attractivity” specification (universally quantified over the controls) be not

verified.

We interconnect the three systems in order to model the intersection of a three-way

stop (see Figure 1). As customary for the majority of real world traffic laws, we impose

a “yield to the right” rule. Introduce the indicator function

1[−c,0](x) =
{

1, if x ∈ [−c, 0];
0, else.

Notice that the interconnection is “directed,” in that a cycle between the systems is

formed. More specifically, the connection between Hi and H(i+1)mod3 is specified by

Σi,(i+1)mod3 = {R × ∅, gi,(i+1)mod3 × g̃}, i ∈ {0, 1, 2}, where g̃ = g(i+1)mod3,i is undefined

becauseW(i+1)mod3 is the empty set (again, because of the orientation of the intercon-

nection). The following function defines the structure of the interconnected inputs:

ui = gi,(i+1)mod3(y(i+1)mod3) = ui1[−c,0]C (x(i+1)mod3) =
{

0, if y(i+1)mod3 ∈ [−c, 0];
ui, else.

We have denoted with [−c, 0]C the complement of [−c, 0]. Given the structure of the

Σi,(i+1)mod3, i ∈ {0, 1, 2}, the interconnection is associative. The three models are then

composed with no particular order: define HΣ = (((H1||Σ2,1H2)||Σ3,(2,1)H3)||Σ1,(3,(2,1))H1).

Notice that, while having fully utilized the inputs of the three systems by connecting

them, the use of the identity feedback map allows to obtain a pairwise composed system

which is still partially controlled. More precisely, if the state ofH(i+1)mod3 is in [−c, 0]C ,

then UΣi,(i+1)mod3 = Ui. If instead the state ofH(i+1)mod3 is in [−c, 0], then the composition

is dynamical (see Figure 2).

Assume now that the system parameters are the same for the three systems. When-

ever the initial conditions of the three cars is the same, i.e. x0
1 = x0

2 = x0
3 and the cars

apply the same control policy until the intersection is reached, a deadlock situation ap-

pears. In fact the three cars shall stop at the intersection, each of them “waiting” for

the next one on its right to proceed. This is a deadlock situation. By modifying the

19

width (parameter c) of the buffer zone, we can tune the “spatial sensitivity” that yields

possible deadlock situations. From another perspective, for any combination of the pa-

rameters and a predefined choice of the control policy for each model, there exists a set

of initial conditions that is associated with a deadlock. If we look at the system in its

entirety, from a dynamical standpoint the obtained deadlock condition corresponds to

finite-time stability.

x1 = - c

x1 = 0

x1 = d

x1

x2 = - c

x2 = 0

x2 = d

x2

x3 = - c

x3 = 0

x3 = d

x3

yield rule

yield rule yield rule
compositions

buffer

intersection

Fig. 1. Composition of the three dynamical control systems according to specific rules.

We suggest here that deadlock may be avoided if a certain level of coordination is at-

tained between the three cars. More formally, a centralized control strategy is needed. If

instead a (deterministic) decentralized approach is considered (that is, based just on the

local information of the neighbor to the right), the above discussion should convince that

deadlock cannot be avoided. In this last instance, a possible different approach would

be that of randomization of the control strategy—this would require the introduction

of a stochastic framework, which we postpone to future endeavors. As a related exam-

ple, in communication systems, random-access algorithms are used for packet collision

avoidance in a sender-receiver (i.e., decentralized) ethernet with shared resources. The

topic of deadlock resolution is more formally studied in a ongoing research effort.

20

x1 = - c

x1 = 0

x1 = d

x2

x3

x1

Fig. 2. Three cars crossing an intersection.

Livelock Example: Collision-Avoidance Maneuver for Decentralized Agents

Let us consider a dynamical model H for an autonomous agent, for instance an un-

manned aerial vehicle (UAV). The objective of the UAV is that of tracking, in isolation,

a point x0 = [(x0)1, (x0)2]T in a two-dimensional plane. Let us assume in generality that

Init = D = R2. The simple controlled dynamics of the UAV depend on the variable

x = [x1, x2]T , and are described by:
(

ẋ1
ẋ2

)
=

(
u1
u2

)
,

where u = [u1, u2]T ∈ [−K,K]2 ⊂ R2,K < ∞, is an open-loop direct control on

the velocity of the UAV. We can express the UAV goal as the following reachability

specification:

ϕR(U, x0) := ∃u∗ : [0,∞)→ U,∃ 0 ≤ t∗ < ∞ : x(t∗) = x0.

The output space of the system H corresponds to its state space, Y = X = D. As the

system under study is purely dynamical, the transition set is T = ∅. Let us consider a

bounded, twice-continuously differentiable function V : R2 → R+, such that ∇V(x0) =

[0, 0]T , and ∇2V(x) is negative definite, for all x ∈ R2. These conditions are sufficient to

ensure that x0 is a global maximum of V . Introduce the quantity k = maxx∈R2 ‖∇V(x)‖,
where ‖·‖ is any vector norm. The tracking objective can be easily achieved by selecting

the following feedback control structure:
(

u1
u2

)
= μ

(∂V
∂x1
∂V
∂x2

)
, μ ∈

[
−K

k
,

K
k

]
.

21

This control tracks the point x0 via a gradient ascent algorithm. Although our example

is very simple, it effectively points out that a livelock can arise when using navigation

functions [23] for the decentralized control of robots.

Let us now consider the “composition” of two such UAVs, H1 and H2. The con-

nection is symmetric (Σ1,2 = Σ2,1), and is specified by Σ = {[−K,K]2, g1 × g2}. Both

UAVs are endowed with the same control strategy, which is decentralized as it does

not exploit any mutual information of the state of the other controller. Assume fur-

ther that both UAV have the same reachability specification, possibly with different

end points x0: ϕ1(U1, x1
0), ϕ2(U2, x2

0). The composition betweenH1 andH2 is intended

to reflect a collision-avoidance strategy. This strategy dictates to abruptly “veer to the

right” if the distance between the two UAV gets to be smaller than a given constant

radius 0 < r < ∞. Let us refer to the variables x1 = [x1
1, x

1
2]T forH1 and x2 = [x1

1, x
1
2]T

forH2, the controls u1, u2, and introduce the function

h(x1, x2) =
{

1, if d(x1, x2) ≤ r,
0, else,

where d(·, ·) is a distance operator on R2. Consider the interconnected system
{

ẋ1 = ũ1

ẋ2 = ũ2

defined by the inputs

ũ1 = g1(x1, x2) = u1(1 − h(x1, x2)) + h(x1, x2)|V(x1)|
[

1 0
0 −1

] (
x1

2
x1

1

)

ũ2 = g2(x1, x2) = u2(1 − h(x1, x2)) + h(x1, x2)|V(x2)|
[

1 0
0 −1

] (
x1

2
x1

1

)
.

This interconnection yields a controlled model (regular point-tracking mode) if the

two UAVs are distanced by more than r, while it results in a purely dynamical model

(collision-avoidance mode) if the opposite holds. Notice that the interconnected system

can be formally reframed as a HCS by the intuitive introduction of a guard set encod-

ing the condition on the distance between the two UAVs. We leave this exercise to the

interested reader.

The use of such a decentralized control (recall the similar situation for the deadlock

in the previous example) may result in a livelock situation. Figure 3 describes the output

of a simulation, where each UAV tracks a different end-point (in cyan color). Both

controls depend on two Gaussian functions, centered around the specific end-point.

The trajectories, in red and magenta, originate from the green points. The plots are both

22

in the two dimensional plane, as well as on the surface of the corresponding function.

Notice that the UAV temporarily engage in a collision-avoidance situation, which is

then resolved. In other words, while the two UAV tangentially influence each other,

they end up achieving their goal.

Figure 4 instead shows the composition of two systems with the same objective

point, x1
0 = x2

0 = x0. A single Gaussian is then used to devise the control function.

This condition results in a situation of livelock. The plots of the trajectories (in red and

magenta) are in two dimensions (left), as well as lifted on the Gaussian function (right).

The UAV’s start from the green points, and aim at the point colored in cyan.

�2.5 �2 �1.5 �1 �0.5 0 0.5 1 1.5 2 2.5
�2

�1.5

�1

�0.5

0

0.5

1

1.5

2

x
1

x 2

Fig. 3. Non-pathological behavior in a collision-avoidance maneuver for two UAVs.

Similar to the deadlock example, the presence of a livelock situation is related to

the use of a decentralized control structure.

8 Conclusions and Future Work

This work has introduced the notion of deadlock and livelock behaviors for determin-

istic Hybrid Control Systems. The formal categorization of the notions of the notions

of deadlock and livelock to the hybrid framework extend known concepts in the liter-

ature. It is important to notice that the ideas introduced in the paper tailor to known

ones from the literature on discrete transition systems, HIOA, or dynamical systems.

23

�5 �4 �3 �2 �1 0 1 2 3 4 5
�4

�3

�2

�1

0

1

2

3

4

x
1

x 2

�8
�6

�4
�2

0
2

4
6

8

�8

�6

�4

�2

0

2

4

6

8

0

0.2

0.4

x
1

x
2

V
(x
1,
x 2
)

Fig. 4. Livelock situation resulting from a collision-avoidance maneuver for two UAVs.

Deadlock and Livelock verification, prevention, and resolution are topics that only find

a limited space in this paper, and which the authors are currently formally investigating.

In particular, the use of randomization in the control strategies is a technique that is

commonly used to resolve pathological behaviors, and which can be framed within the

proposed approach, at the expense of introducing a probabilistic framework.

The authors are also working on a number of extensions of the presented results. The

concept of composition is prone to be generalized, and the issue of deep composition

[15], that is of a composition procedure preserving certain properties by construction,

clearly connects with the presented work when the absence of deadlock or livelock is

the specification to be exported.

Acknowledgments

The authors would like to thank Giordano Pola for the initial contributions to the project.

The work has been partially supported by the NSF grant CCR-0225610 and STREP

project n. TREN/07/FP6AE/S07.71574/037180 iFLY.

References

1. M. Abadi and L. Lamport. Composing specifications. In REX Workshop on Stepwise Refine-
ment of Distributed Systems, Mook, NL, May 1989.

2. Martin Abadi and al. Preseving liveness: Comments on “safety and liveness from a method-
ological point of view. Information Processing Letters, 40-3:141–142, 1991.

3. A. Abate, A. Tiwari, and S. Sastry. Box invariance for biologically-inspired dynamical sys-
tems. In 46th IEEE Conference on Decision and Control and European Control Conference,
pages 5162–5167, New Orleans, LA, 2007.

24

4. Bowen Alpern and Fred Schneider. Defining liveness. Information Processing Letters,
21:181–185, 1985.

5. R. Alur, C. Courcoubetis, T.A. Henzinger, and P. Ho. Hybrid automaton: an algorithmic ap-
proach to the specification and verification of hybrid systems. In R.L. Grossman, A. Nerode,
A.P. Ravn, and H. Rishel, editors, Hybrid Systems, LNCS 736, pages 209–229. Springer
Verlag, 1993.

6. R. Alur and T. Henzinger. Reactive modules. In Proceedings of the 11th IEEE Symposium
on Logics in Computer Science (LICS), pages 207–218, 1996.

7. R. Alur and T. Henzinger. Modularity for timed and hybrid systems. In Proceedings of
the 8th International Conference on Concurrency Theory (CONCUR 97), LNCS 1243, pages
74–88, 1997.

8. A. D. Ames, A. Abate, and S. Sastry. Sufficient conditions for the existence of Zeno behavior.
In Proceedings of the 44th IEEE Conference on Decision and Control and European Control
Conference, pages 696–701, Seville, SP, 2005.

9. E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate reachability analysis of piece-
wise linear dynamical systems. In Hybrid Systems: Computation and Control, Pittsburgh,
USA, Lecture Notes in Computer Science. Springer Verlag, March 2000.

10. F. Blanchini. Set invariance in control. Automatica, 35:1747–1767, 1999.
11. S. Bornot and J. Sifakis. On the composition of hybrid systems. In Hybrid Systems: Com-

putation and Control, Berkeley, USA, volume 1386 of Lecture Notes in Computer Science,
pages 69–83. Springer Verlag, 1998.

12. A. Chutinan and B. Krogh. Computing polyhedral approximations to flow pipes for dynamic
systems. In Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL,
pages 2089–2094, December 1998.

13. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,
Boston, 2000.

14. Jennifer Davoren and Paulo Tabuada. On simulations and bisimulations of general flow
systems. In A. Bemporad, A. Bicchi, and G. Buttazzo, editors, Hybrid Systems: Computation
and Control, LNCIS 4416, pages 145–158. Springer Verlag, 2007.

15. L. de Alfaro, T. A. Henzinger, and R. Jhala. Compositional methods for probabilistic sys-
tems. In CONCUR – Concurrency Theory, LNCS 2154, pages 351–365. Springer Verlag,
2001.

16. A. Girard. Reachability of uncertain linear systems using zonotopes. In M. Morari and
L. Thiele, editors, Hybrid Systems: Computation and Control, volume 3414 of Lecture Notes
in Computer Science, pages 291–305. Springer Verlag, 2005.

17. Zhi Han and B. H. Krogh. Reachability analysis of large–scale affine systems using low–
dimensional polytopes. In J. Hespanha and A. Tiwari, editors, Hybrid Systems: Computation
and Control, volume 3927 of Lecture Notes in Computer Science, pages 287–301. Springer
Verlag, 2006.

18. M. Heymann, F. Lin, G. Meyer, and S. Resmerita. Analysis of Zeno behaviors in hybrid
systems. In Proceedings of the 41st IEEE Conference on Decision and Control, Las Vagas,
NV, 2002.

19. M. Heymann, F. Lin, G. Meyer, and S. Resmerita. Analysis of Zeno behaviors in a class of
hybrid systems. IEEE Transactions on Automatic Control, 50(3):376–383, 2005.

20. K. H. Johansson, M. Egerstedt, J. Lygeros, and S Sastry. On the regularization of Zeno
hybrid automata. Systems and Control Letters, 38:141–150, 1999.

21. A.A. Julius, G. Fainekos, M. Anand, I. Lee, and G.J. Pappas. Robust test generation and
coverage for hybrid systems. In A. Bemporad, A. Bicchi, and G. Buttazzo, editors, Hybrid
Systems: Computation and Control, To appear, LNCIS 4416. Springer Verlag, 2007.

22. E. Kindler. Safety and liveness properties: A survey. Bulletin of the European Association
for Theoretical Computer Science, 53:268–272, October 1994.

25

23. D.E. Koditschek and E. Rimon. Robot navigation functions on manifolds with boundary.
Advances in Applied Mathematics, 11(4):412–442, 1990.

24. A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability analysis. In N. Lynch
and B.H. Krogh, editors, Hybrid Systems: Computation and Control, Lecture Notes in Com-
puter Science 1790, pages 202–214. Springer Verlag, 2000.

25. G. Lafferriere, G. J. Pappas, and S. Yovine. Symbolic reachability computations for families
of linear vector fields. Journal of Symbolic Computation, 32(3):231–253, September 2001.

26. J. Lygeros. On reachability and minimum cost optimal control. Automatica, 40 - 6:317–327,
2004.

27. J. Lygeros, K. Johansson, S. Simic, J. Zhang, and S. Sastry. Dynamical properties of hybrid
automata. 48(2-18), 2003.

28. Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O automata revisited. In
M.D. Di Benedetto and A. Sangiovanni-Vincentelli, editors, Hybrid Systems: Computation
and Control, LNCIS 2034, pages 403–417. Springer Verlag, 2001.

29. Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O automata. Information and
Computation, 185(1):105–157, 2003.

30. Joseph Sifakis. The compositional specification of timed systems. In Computer-Aided Veri-
fication, Trento, IT, 1999.

31. E. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd
edition. Springer Verlag, New York, 1998.

32. P. Tabuada, G. Pappas, and P. Lima. Compositional abstractions of hybrid control systems.
Journal of Discrete Event Dynamical Systems, 14(2):203–238, 2004.

33. H. Yazarel and G. J. Pappas. Geometric programming relaxations for linear system reacha-
bility. In Proceedings of the 2004 American Control Conference, Boston, MA, June 2004.

34. J. Zhang, K. H. Johansson, J. Lygeros, and S. Sastry. Zeno hybrid systems. International
Journal of Robust and Nonlinear Control, 11(5):435–451, 2001.

26

